Methods for the Interactive Analysis and Playback of
Large Body Simulations

Markus Broecker
Living Environments Laboratory
Wisconsin Institutes for Discovery
Room B1142, 330 N Orchard St.
University of Wisconsin-Madison
Madison, WI 53715
Phone: 608-316-4690
broecker @wisc.edu

Abstract— Simulations, such as n-body or smoothed particle
hydrodynamics, create large amounts of time variant data that
can generally only be visualized non-interactively by rendering
the resulting interaction into movies from a fixed viewpoint.
This is due to the large amount of unstructured data that make
these data incapable of either loading into graphics memory or
streaming from disk. The presented approach aims to preserve
the interactively navigable 3D structure of the underlying data
by reordering and compressing the data in such a way as to
optimize playback rates. Additionally, the presented method
is able to detect and describe coherent group motion between
frames which might be used for analysis.

TABLE OF CONTENTS

1. INTRODUCTION .. ttueeeeensonsonssnsosssscescessnnns 1
2. PREVIOUS WORK ..ivvviniinrencsnssscsscencessnnons 1
3. MOTION GROUPS ..iivvenrensencansescsacancassnnons 3
4. COMPRESSION. . tiuteeeensensansassoscsscascassnsnns 4
5. ANALYSIS t1tiieiieeneeesensensonssssosssscsscessnsnns 4
6. DISPLAY tiuiiiiiiiinieeeensensensensescsscascascnnans 4
7. RESULTS tiiiuiiiieineeeeeneensensansescsacascascnsans 5
8. DISCUSSION ..eitiinieneeneensensencesceacascascnnans 7
9. CONCLUSION .tittineeeeensensancancescescascsscnsans 9
ACKNOWLEDGMENTS .eveutenteneencenceacancancascnnes 9
REFERENCES . .utiieteeeeeeeaseenscanscassccsascansons 9
BIOGRAPHY .1viuiiniinrnnronrenconcssssssascescnsanss 10

1. INTRODUCTION

Time-variant three-dimensional point clouds are a rich source
of information that can be explored, annotated and interacted
with in virtual reality environments. While physical simula-
tions, for example n-body or smoothed particle hydrodynam-
ics (SPH) simulations, generate these types of information,
the complexity of the calculations precludes them from run-
ning in real-time. The results of these simulations are often
very large in size, which hinders interactive visualization of
the data. In this regard, the common method for viewing these
types of simulation is through pre-rendered animations.

Unfortunately, pre-rendered movies do not provide a foun-
dation for immersive exploration of the data. The forced
perspective inhibits a user’s ability to experience the data
in interactive 3D environments. Beyond the user’s inability

978-1-4673-7676-1/16/$31.00 (©2016 IEEE

Kevin Ponto
Living Environments Laboratory
Wisconsin Institutes for Discovery
Room 3176, 330 N Orchard St.
University of Wisconsin-Madison
Madison, WI 53715
Phone: 608-316-4330
kbponto @wisc.edu

\11 ‘.’

Figure 1: A user navigating the ‘Galaxy’ data set in the
CAVE. This data set contains 1.5 millions of individual
particles moving through 2,500 frames.

to control the perspective of the data, the user can also not
dynamically control the colors and shading of the individual
projected points. On the other hand, compressing point cloud
data on a per-frame basis leads to very low play back rates
due to the high decompression cost.

The challenge of creating immersive 3D animations from
time-varying point clouds comes almost exclusively from the
large file size. The data requirements are so high that even
using state of the art, locally connected solid state drives,
the data can not be shown at standard animation rates (as
shown in Section 7). Therefore, in order to enable real-time
playback, for example in an immersive VR environment, such
as a CAVE (Figure 1), the data must be compressed in a GPU-
friendly manner.

2. PREVIOUS WORK

The most straight-forward approach to compress a sequence
of time-variant point clouds is to compress each frame in-
dividually and reconstruct the sequence from the individual
frames. Extensive research into compression of static point
cloud data exists. Schnabel et al. compress static point
clouds by creating and compressing displacement maps over
geometric primitives. A RANSAC-based shape detection
method segments the initial point cloud into distinct geo-
metric shapes which can be efficiently encoded using only
a few parameters. Additional detail is achieved by storing

point offsets as heightmaps with different levels of detail.
Compression of this texture data is achieved through vector
quantization [1]. This method works well for point cloud
models created from physical surfaces, for example LiDAR
scans of statues. However it is unclear if this method can
be applied to point clouds which do not represent surfaces,
such as n-body or SPH simulations. Detecting localized
groups within unordered point clouds using RANSAC model
estimation is very similar to the method proposed in this
work. However, we will apply the RANSAC group detection
in the temporal domain, whereas Schnabel et al. apply it in
the spatial domain within a static point cloud.

Octree partitioning is commonly used for spatial organization
of point clouds but can also be used for compression. If the
tree’s leaf size is chosen small enough so that a single point
of the initial point maps to a single leaf, reconstruction of the
initial point clouds is possible from the octree structure [2]
alone. Potentially, the tree structure is able to be compressed
and stored more efficiently than the underlying point cloud.
However, there are two drawbacks to this method: first the
points of the initial point cloud do not retain their original
position but are represented by their respective leaf nodes’
center. Secondly, while octrees are able to describe the
elements of a point cloud implicitly, the space requirement
of octree structures grow exponentially with every tree level
of non-empty nodes. If an accurate representation of the un-
derlying point cloud is desired a very detailed, and therefore
deep, tree must be constructed.

The point cloud library (PCL) [3] offers a built-in lossy
compression mechanism targeted towards streaming point
cloud data from sensor devices based on a double-buffered
octree structure [4]. Differences in the octree between two
frames are encoded efficiently through range encoding. This
methods provides excellent compression ratios at a high qual-
ity. While this method is targeted towards real-time streaming
of point cloud data created by depth cameras, we found
the performance lacking with larger point clouds. Section
7 discusses this method in detail and contrasts it with our
approach.

Lengyel introduced the idea of compressing time-variant ver-
tex data based clustering based on a description of clustered
transformations between frames [5]. Clusters are created
based on local proximity. The vertex-based approach is easily
extendable to point cloud data sets. However, his approach re-
quires solving and optimizing the whole animation sequence
for all vertices over all frames at the same time which is
infeasible for larger data sets.

Compression methods for time-varying data from physical
simulations usually consider only volumetric data. Previ-
ous work extended the concept of octrees into the temporal
dimension [6], [7]. The initial data is first quantized and
separate octrees are built for each time step. A second step
collects all created octrees; sub-trees of multiple time steps
are re-used if no or only little change was detected thus
compressing the data. Additionally, rendering over multiple
frames uses compositing to reuse previously rendered views
for parts of the data set that are unchanging over multiple
time steps. Our method is designed around unstructured point
cloud data.

Following the idea of representing geometry through texture
images [8] and utilizing existing image compression tech-
niques to lower the memory footprint, there have also been
many efforts to extend this idea to create “geometric videos”.

Figure 2: Shows detected groups, each with a unique color,
in the ‘Galaxy’ data set. As shown, the algorithm is able to
detect rings of similar motion for the rotating cluster of stars.

Alexa and Miiller proposed using Principal Component Anal-
ysis along the temporal axis as a means of data compression
[9] while Lengyel and Bricefio et al. utilized prediction
methods of projected 3D surface data [10]. Similarly, another
approach is to store positional information as color channels
and utilize existing video compression software [11], [12].
While these approaches are intended for meshes it is trivial
to use these methods also for point clouds, especially as the
number of vertices is limited and unchanging in the presented
methods. Movie compression is optimized for fast decom-
pression speed but it introduces fundamental errors which
makes it unsuitable for point cloud data compression: first,
the input data must be a low dynamic range image stream
which introduces severe quantization errors into the data set
(few high-dynamic range movie compressors exist). Second,
channel responses and sampling in video compression codecs
are non-linear, a three-dimensional position is cannot without
loss be interpreted as, for example, a YUV color coordi-
nate. Finally, additional error is introduced when converting
between color spaces which are often furthermore built on
principles of human perception and not linear representation.
Applying a movie compression scheme on a quantized data
set therefore changes the initial data set beyond what can be
accepted as ‘lossy compression’.

Given the previous work, our goals are to

1. Detect transient motion Groups for data analysis: This
novel kind of clustering enables efficient representation of
common group motion within data sets. This group motion
can be exploited for effective compression and initial visual
analysis of data sets. Figure 2 shows some detected motion
groups in a data set of a simulated galaxy simulation.

2. Enable interactive bi-directional playback: A block
structure with independent frames allows the effective recon-
struction of points at any point in the data stream, thereby
allowing the user to play back animations and data sets both
forwards and backwards which is different from the current
video compression methods in which a frame is calculated
from a key frame and a uni-directional sequence of changes
to it.

3. Enable user defined annotations: We define meaningful
interaction with the data set as both interactive exploration as
well as annotation of the data, which is currently impossible
with standard videos.

We employ a two-stage algorithm to do so. The first stage is
the split phase in which common motion groups are detected

Frame B

Groups for Frame A

V—1 KK = ecccca==a

Select Random Subset

s E— R i

Transformation Reneat
Detection .
Times
v
»| T —>{Comparison |«

B=ouicrs 1 wies [

Groups for Frame B

Figure 3: The algorithm.

between frames and followed over a sequence of multiple
frames. The algorithm recursively splits the motion groups
in the temporal domain, creating a tree-like hierarchy to best
describe the motion of individual particles over frames.

The second stage is the gather phase in which the original
data set is re-ordered based on the detected transformation
hierarchy. This operation effectively compresses the data set
while at the same time optimizing it for GPU transfer.

3. MOTION GROUPS

The ‘split phase’ detects common motion groups in the
data set between consecutive frames. Given a sequence
(Fo, F1, Fy, ..., F,) of point cloud frames that are regis-
tered, the algorithm finds the best clustering which describes
motion groups from Fy to F,,. The input point clouds are
index-matched, that is the n — th point is ‘the same’ over all
frames.

Detection Motion Between Two Frames

We assume that the motion of a single particle is coherent
(and not jerky) through multiple frames. We also assume
that many particles from one frame have a similar linear
motion that results int their positions in the next frame and
similarly from the second to the third frame and so on.
However, we do not impose spatial or localized coherence
on this motion. Linear motion between positions can be
described effectively using a transformation matrix that maps
the input positions onto the output positions. Points with the
same transformation are grouped into motion groups which
contains the points as well as the corresponding matrix.

A greedy algorithm is used to create motion groups between
two frames. A method similar to the Iterative Closest Point
algorithm [13] is used to detect a transformation between
the points of the first and second frame that minimizes the
transformation error (over all points). If a rigid motion
between frames is assumed with no scaling, an SVD-based
3D pose (or camera orientation) estimation method can be

used to determine this transformation. A fixed number of
randomly selected points in the input and output point cloud
are used to determine the transformation matrix which is
applied to all input points. Each point so transformed is then
classified as either an inlier or an outlier, based on a user-
chosen threshold and the linear distance between transformed
point and original input.

The motion estimation coupled with the inlier/outlier seg-
mentation is encapsulated in a RANSAC loop. Multiple
instances of the ICP detector are run in each iteration; the
best result is chosen according to the number of inliers and
overall lowest error. A motion group is then created, storing
the detected matrix and the corresponding points which are
removed from the input point cloud. This algorithm is
repeated until either the input set becomes empty or a fixed
number of iterations have passed in which the input set did
not get reduced. Figure 3 shows the algorithm in detail.

Motion Over Multiple Frames

The algorithm splits each frame into a number of motion
groups and outlier groups. Each of those motion groups will
have a parent motion group in a previous frame. The initial
group used to initialize the algorithm contains all points of
the first frame as well as the identity transformation.

Multiple consecutive frames with their motion group trees
and outliers are grouped into separate blocks, each block
storing all information necessary to play back this sequence
of frames. The ratio between inlier and outlier points defines
a user-selectable cutoff when a new block is started, as this
ratio indirectly controls the possible compression rate of the
data. Figure 4 shows on the left the transformation tree built
from motion groups and outlier nodes. The tree’s nodes are
sorted, motion groups are inserted at the top while outlier
nodes are always inserted at the bottom thus creating a clear
separation each frame.

While this method was originally designed to handle time-
variant point cloud data sets of fixed size, it is easy to extend
it to variable size data sets, such as the ‘snowball’ data
set. In this data set, the criterion to create a new block
and motion group tree was the creation of a new snowball
and associated points every 30 seconds. More chaotic point
creation/destruction can be handled by marking these points
as outliers.

Reconstruction

If a point lies within a motion group, it can be reconstructed
by following the transformation chain of their group to their
unique initial point:

P ="Tn X Th_1 X ...xT] X pg.

This transformation chain is usually stored pre-multiplied in
each motion group (as it is unchanging) and enables quick
reconstruction of points. This independence of each group
within a frame and withing the sequence of multiple frames
makes the representation more versatile than video-codec
inspired compression methods, as it allows seeking in both
direction and each frame is independent of the previous one.
If a point was deemed an outlier at any stage of the algorithm,
it is stored directly with XYZ coordinates; reconstruction is
not necessary.

4. COMPRESSION

Compression is achieved through reordering of the point
cloud based on the hierarchical transformation tree (see Fig-
ure 4). We call this reordering the ‘gather phase’ of the
algorithm.

As points in a motion group 7, in frame 2...m can be
reconstructed from the initial point and the groups transfor-
mation, the only information needed for reconstruction is
the initial point start index, the size of the group and the
accumulated transformation matrix of this group. Outliers
are stored directly. A large number of outliers per frame
therefore decreases compression efficiency. The presented
method affords a high decompression speed by reordering the
initial data set and inferring point positions by through their
transformation chain and initial point.

Redirection List

Compression of the data set reorders the initial point cloud
in the first frame of each block. However, texturing and
indexing requires consistent indices between blocks. An
optional redirection list within each block achieves this by
storing the original indices for each point as a single integer.
This list is not needed for pure playback but only if coloring
and selection is wanted. As the number of points do not
change between frames/blocks this list of a fixed size and
cost.

5. ANALYSIS

We investigated three data sets created from physics simula-
tions, which are summarized in Table 1. File size is the initial
size of the data set, usually stored as a sequence of ASCII
encoded files, while the bounding box span is the average
(over all frames) length of the bounding box diagonal. Note
that while the file size of the data sets is below some of the
larger simulation data sets, it is still too big to fully load into
GPU memory simultaneously for the whole data set.

The ‘Galaxy’ data set displays the collision of two galaxies
and was generated from GADGET cosmological simulations
[14]. The first half of the data set shows very uniform motion,
as the both galaxies rotate around their central axis and move
towards each other. Once their positions join most of the
movement is of chaotic nature as gravity tears them apart.
Figure 2 shows the groups found in one of the galaxies during
an early frame in the data set while Figure 5 shows three
different frames at the beginning, the middle and towards the
end of the data set.

The ‘Dambreak’ data set simulates an initially static block of
liquid crashing against a single pillar using the DualSPHysics
Engine [15] and can be seen in Figure 6. The data set starts
with a wall of liquid filling roughly a quarter of the simulated
volume on one side and ready to crash into a simulated pillar.
The latter part of the data set has very chaotic movement,
turbulence and wave breaks and crowns as the liquid impacts
the obstacle and flows around it.

The ‘Snowball’ data set simulates a series of snowballs
colliding with a static object. The sticky nature of snow
is simulated — snow balls are able to break apart but large
chunks stick together. This data set was generated with
the Chrono Physics Engine [16]. Of note is the steadily
increasing number of points in the scene, as a new snowball
containing 75, 000 points is created every 30 frames. Figure

7 shows the groups in three frames from the sequence.

Table 1: The data sets we used to test our method.

Galaxy | Dambreak | Snowball
Frames | 2,500 126 694

Points (10) 1.4 1.3 0.08 — 1.7
Size/frame (MB) 22 50 ~22
File size (GB) 54.0 8.0 72.0
Bounding box span | 93.3 18.3 17.5
1% error 0.93 0.183 0.175

6. DISPLAY

A major advantage of the block structure over the initial point
cloud data is the reduced amount of information that has to be
transferred to the GPU. To draw frames of an unpacked point
cloud, every point must be uploaded for each frame. While
this is straight-forward to implement, it does not utilize GPU
memory and bandwidth efficiently.

Using the block structure for rendering, the key frame’s points
and all transformation matrices are uploaded and stored on
the GPU while frames of this block are rendered. A frame
is drawn with only two draw calls: first all motion groups
are rendered by drawing the key frame’s points from [0..N],
where N is the number of inliers in this frame. An index
for each point provides the correct transformation matrix
index used for this point. The transformation buffer, storing
all motion group’s matrices, is indexed into and a shader
transforms the resulting vertex into clip space:

DPOSclip = vap . Mtransform,i . 'Uertexkeyframea

where pos. s, is the clip-space position of the vertex, M,y
is the current ModelView-Projection matrix, M ans form,i 1S
the transformation matrix for the index i and verteTyey frame
is the currently rendered vertex.

The second draw call renders all outliers for a frame directly;
their data is uploaded to the GPU in advance after a block was
loaded with each frame storing its outliers in a separate vertex
buffer. This data does not change either for a frame and the
buffer is rendered using a single draw call as well.

We render the points of the cloud as point sprites with variable
radii. Rendering distance and a user-controlled variable
control the radius of point sprites. A shader shades the
particles to simulate spheres and discards fragments accord-
ingly. Some data sets, such as ‘Galaxy’, simulate non-solid
particle objects, liquids or gases. In these cases, the point
sprites are alpha-blended. Rendering of liquids could also be
implemented using runtime surface reconstruction methods,
such as marching cubes.

Interaction and Selection

The major advantage of our compression algorithm over
rendered movies is that it preserves the nature of unordered
three-dimensional point clouds, thus allowing the exploration
of these and observing them from novel viewpoints. Interac-
tion is implemented through data exploration and annotation.

Figure 6 shows a user interacting with the ‘Dam break’ data
set in the CAVE. The wand is used for navigation, playback
control and selection while other interaction settings, such as
setting render options or changing point colors, are imple-
mented using a 3D GUIL

Split Procedure ——

:

Inlier
group
List

Point
List

= Outlier —jp—

Frame 3

Frame 1 Frame 2

<«— Gather Procedure

7]
g— T4 T2 Ta
e
o T4 T2
T4 T3
T1 T3 T7
T1 T2

T4 T3

Frame 2 Frame 3

Frame 1

Figure 4: Splitting the point cloud into motion groups in the ‘Split Phase’ and reordering the initial points based on the

hierarchy to efficiently save space in the ‘Gather Phase’.

Figure 5: Three frames in the ‘Galaxy’ data set rendered using additive blending for particles. Normally this data is viewed
through prerendered animations. However, using our algorithm, we are able to interactively visualize this data set at rates

greater than 30 frames per second.

Playback control allows data sets to be played forwards and
backwards at higher or lower speeds. To enable this kind of
control, we implemented playback using a sliding window
technique with a fixed buffer of preloaded blocks in either
direction. Playback moves the current buffer contents to
either side while the block in the center is considered the
‘active’ one and is the only one rendered. A separate thread
is used for file loading and keeping the buffer filled.

When visualizing large point clouds from physics simula-
tions, it is desirable that some points can be selected and
tagged so that their location can be easily followed through
the simulation. We implemented tagging through a ray-point
distance selection mechanic.

Implementation

We implemented the algorithm in C++ using standard li-
braries such as boost, OpenMP and OpenGL. Multiple pro-
grams and tools were created to compile data sets, display
the data, extract information from the packed blocks, etc. The
tools were implemented on a standard desktop PC featuring
with a quadcore Intel 17 CPU, 16GB of RAM an NVidia
GTX 750 GPU with 2GB of VRAM and a Samsung SSD.
Large parts of the algorithm can be parallelized, for example
transform detection, inlier counting, node splitting or selec-
tion which we did using boost threads and OpenMP.

7. RESULTS

In this section, we analyze our methods in terms of error,
compression and decompression/playback speed on the three
data sets introduced in Table 1. In particular, we were
interested in the actually achieved error, the compressed size
of the data sets, decompression speed and resulting display
rate.

Error

The maximum permissible error € is an upper bound during
splitting and reconstruction. Outliers decrease the overall er-
ror, as their position is unchanged from their original position.
We measured the mean positional error of all points for all
frames of the data sets by measuring the distance between
the reconstructed and the original point. The data sets were
compressed with € = 0.1 and which is less than a 1% relative
positional error, as seen in Table 1. The maximum outlier
ratio before a new block was started was set to 0.35 which was
determined to be optimal for these data sets through empirical
analysis.

With an absolute error of ¢ = 0.1 we expected to see a
maximum actual error of

€maz = € X (1 — outlier,,q,) = 0.1 x (1 —0.35) = 0.065.

Table 2 shows the mean positional errors, as well as the
relative error, which is the mean error divided by the span of

puons

‘\endeﬂ“g)
SOt
-

LLTLTLTERNY

Figure 6: A user annotating the dam break data set in the
CAVE.

the data set’s bounding box to give an indication of quality.

Table 3: Compression of the data sets.

Galaxy Dam break | Snowball

Raw 40.0 24 7.1
LZMA | 36.0 (0.90) | 2.0 (0.83) | 6.2 (0.87)
LAZ | 26.1 (0.65) | 0.7(0.29) | 3.1(0.44)
MG4 | 15.6(0.39) | 0.3(0.13) | 1.8(0.25)
PCL | 43 (0.11) | 0.2(0.09) | 0.6 (0.08)
Our method | 11.0(0.28) | 0.8 (0.33) | 0.6 (0.08)

rendering raw point clouds and the same sequence com-
pressed by different methods. Interactive frame rates require
high data throughput which requires both high read speed of
files as well as low transfer times to the GPU. The former
is achieved through small file sizes, whereas the latter is
achieved by efficiently re-using data in our case. Point
cloud data compressed with previous methods cannot be used
directly on the GPU and has to be decompressed first, thereby
increasing required data size and upload time. Table 4 shows
the averaged per-frame decompression and upload perfor-
mance of different methods for all decompression methods;
all times are in milliseconds.

Table 4: Per-frame cost details.

The data sets were compressed with a maximumg error Galaxy
threshold of € = 0.1. All errors listed are well below the Method | Read | Unpack | Upload | Draw | Total
expected threshold and represent relative errors of less than Raw | 1169 0.0 100 05 1283
0.3% compared to the largest extend of the data set. LZMA | 49.0 710.0 13.1 0.6 772.5
LAZ | 37.0 287.0 13.1 0.6 337.7
Table 2: Mean positional error. MG4 | 31.0 835.0 13.1 0.6 897.5
PCL | 164 | 2,396.0 13.1 0.6 | 2,426.1
Galaxy | Dam break | Snowball Our | 6.8 0.0 5.6 0.2 12.6
Mean positional error | 0.022 0.056 0.025 Dambreak
Mean relative error | <0.001 <0.003 <0.002 Method | Read | Unpack | Upload | Draw | Total
Raw | 80.1 0.0 94 0.3 89.8
. LZMA | 66.5 | 1,643.0 11.6 05 | 1,721.6
Compression LAZ | 195 | 3580 | 116 | 05 | 3896
We chose to compare our compression method to standard MG4 | 19.5 | 1,311.0 11.6 0.5 | 1,342.6
data compression techniques. Single frames were com- PCL | 11.9 | 1,926.0 11.6 0.5 1,950.3
pressed in sequence for comparison purposes to our method Our | 194 0.0 13.9 0.2 33.6
and PCL’s compression. The following compression mecha- Snowball
nisms were selected: Method | Read | Unpack | Upload | Draw | Total
Raw | 78.7 0.0 7.3 0.3 86.4
Raw describes the tightly packed, binary, uncompressed 32- LZMA | 234 256.3 7.1 0.2 287.1
bit floating point numbers for each data set. LAZ | 175 130.3 7.1 0.2 155.0
LZMA is an improved Lempel-Ziv compression algo- MG4 | 13.1 544.2 7.1 0.2 564.7
rithm [17] and is implemented in many tools such as 7zip. PCL | 9.7 1,035.9 7.1 0.2 1,052.9
MG4 is a commercial LiDAR data compressor developed Our | 4.6 0.0 7.0 0.2 11.8

by LizardTech [18].

LAZ (LASZip) is an open-source LAS LiDAR data com-
pressor introduced by Isenburg et al.[19].

PCL is PCL’s built-in octree-based point cloud compression
method for streaming, based on work by Kammerl et al. [4].

As shown in Table 3 and Figure 8, our method is able to
substantially reduce the data sizes beyond what traditional
lossless compression techniques can achieve. In Table 3, the
compressed size of the data sets are given in GB with the
compression rate relative to the raw size in parentheses.

Performance

One prime motivation to develop this algorithm was the
previous inability to play back time-varying point clouds at
interactive frame rates. The presented algorithm was tested
in this regard by comparing the average playback speed of
our method to the playback speed achieved by loading and

Many decompression tools exist only as external command
line tools. In these cases we took measurements using t ime
commands and subtracted read and write speed on the input
and output files which we measured in a separate program.
The OS file cache was cleared between runs. In case of
these external commands, we were not able to measure GPU
upload speed or draw time directly. Instead we used the
values of the PCL decompression as a representative sample,
as the data has to be converted into a GPU-friendly float
buffer and uploaded to the GPU, a process similar for many
of our other cases.

Data extracted from the presented compression methods re-
sults in a flat point array which stores all points of the
point cloud frame sequentially. We measured upload of
such a ‘raw’ buffer to the GPU and applied this time to all
decompression methods including ‘raw’ file reading. Our

Figure 7: Three frames in the ‘Snowball’ data set. Each group is depicted with a unique a random color while outliers are
colored red. The algorithm detects large groups of particles with similar motion, outliers in one block can be assigned to groups

in later frames.

1 Bl Raw
Bl L7A
LAZ
0.75 [
I FCL
B Cur
05
0.25

Galaxy Dambreak Snowball

Figure 8: Average compression ratio for the three data sets.
As shown, our method is able to achieve similar compression
rates compared to previous methods.

approach presents the data in a more compact form, resulting
in a much lower upload time. Measure of rendering-related
performance numbers is not straight-forward. Modern GPUs
gain much of their performance through pipelining, paral-
lelization and bundling of instructions. Creating breakpoints
to measure performance interrupts the workflow of the GPUs
and introduces an additional performance loss. Lux [20] pro-
vides a good introduction measuring performance in OpenGL
rendering applications using calls to the native rendering API.
However, as the performance measurement is the same for
both methods, it can still act as a guideline for performance
comparison. This model does not take into account buffer-
ing or multi-threaded loading and decompression which can
improve loading and decompression times, however it acts as
a good comparison metric between methods. A lower total
time results in a higher potential frame rate.

Table 5: Playback rate in fps.

[Method | Galaxy [Snowball | Dambreak |
Raw (exp.) [7.8 1.6 1.1
Raw (obs.) | 6.9 10.1 10.4
PCL (exp.) | 04 0.9 0.5
PCL (obs.) | 0.5 0.9 0.5

Our (exp.) | 79.4 84.6 29.8
Our (obs.) | 67.1 68.6 31.0

Block compression results in fewer files which in turn leads
to a reduced file read time, especially after per-frame nor-
malization. Higher compression ratio of PCL results in a
lower read time as well, as the time required to read a file
is a function of file size. However, our method has no actual
decompression requirements. Decompression, in our case, is
just the expansion of the read matrices into 4 X 4 matrices
and the creation of a per-vertex index array, referencing the
correct transformation group. No conversion of the data into
flat float buffers is necessary. Furthermore, we are able to
optimize disk storage to make it highly GPU-upload friendly
which is lacking. Table 5 shows the projected and observed
playback rates for these data sets. The projected value is
derived from the measured performance values in Table 4.
The measured playback rate investigates included the whole
pipeline: from reading the file from disk to rendering an
image on screen.

8. DISCUSSION

In this section we will discuss the results of the evaluation
above as well as the advantages, limitations, and future work
for our presented method.

Results

The data sets in this paper represent a small selection of
possible data sets. We also tested our algorithm against other
data sets, such as animated mesh vertex and motion capture
data, which yielded similar results to the numbers presented
here.

Comparison to Previous Methods—We compared our method
to currently existing point cloud compression methods for
static data. However, the major concern of most compression
methods is storage space, while our goal was to improve
rendering speed. We accept the trade-off of accuracy for
fast decompression. However, we also noted that while
most methods claim to provide ‘lossless’ compression, this
is only true to a certain resolution after which data either gets
discarded or not is reconstructed properly. Compressing and
decompressing often leads to different point clouds, both in
precision and in point ordering. Additionally, many of these
compression methods are found in the field of geospatial
images where certain assumptions about the data can be made
(for example, treating it as a heightmap), which do not hold
for more general point cloud data.

0.035 /

o NN\

0.025 \/ \l

0.02 /\ I\
/ /
/ /

- 500

N/
V - 400
N
/
/

—

300 Error

0.015 == Qutliers

- 200

0.01
/ / /o
0.005

[o e L B LI B e e e e o e e s s e o 0]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Figure 9: The mean aggregate error and the number of outlier
points over three consecutive blocks.

One could make the argument that streaming raw data using
a multi-threaded buffering would yield similar results to our
method. However, the application is ultimately bounded by
file read times and decompression speed. If the time it takes
to read and decompress a file is longer than the time it takes to
display that frame (eg 33ms for a 30Hz refresh rate) the buffer
will run empty. A small file read and decompression time of
our method leads to smaller buffers which also require less
runtime memory.

Discontinuity— One disadvantage of the presented method
lies in the possibility of creating discontinuities between
blocks. The algorithm exhibits the following behavior if
individual frames or the block structure and compared to
their original counterparts which were used as input: the
first frame of the block will map directly onto the key frame
points with an identity transformation, thereby exhibiting no
error. However, following frames will map the key frame
point clouds using estimated transformations and the frame’s
overall error will grow with the error of the individual groups.
Once a group’s error becomes too large, the group will be
converted into an outlier group, its points will be stored
directly and conversely, the error will shrink. However, the
overall error will always increase while staying well below
the maximum error threshold set by the user, as seen in Table
2.

A discontinuity can be detected between two blocks when
the last frame of the current block does not map without a
noticeable error onto the first frame of the next block. This
is true both for static and moving points but more visible
in the former. Figure 9 shows this behavior over multiple
consecutive blocks. Note that the mean error (in blue) at first
increases within a block before continuosly dropping. At the
same time, more and more points are classified as outliers (in
red) and are stored directly, thereby lowering the mean error
of a block.

While there is still a discontinuity, as the error of all points
is not 0, it is barely noticeable in point clouds in which all
particles are in motion; however, it can manifest itself in
scenes in which large parts are stationary. These stationary
areas seem to jitter or jump slightly between two consecutive
blocks. As the error between two blocks decreases with the
number of outliers present, ease-in interpolation is naturally
achieved as the number of outlier points stored in the last
couple of frames in a block is increased at the cost of space
saving. While the discontinuity between two consecutive
blocks is a fundamental problem of the presented approach,
we do not believe it compromises the basic idea of achieving

compression from tracking motion groups.

Advantages

The presented method has a number of advantages over
previous presentation and compression methods. First, we
store true 3D data, as opposed to movies rendered from a
fixed perspective, thus our algorithm lets the user explore and
interact with the data.

Second, the algorithm enables the user to choose an error
rate in absolute coordinates. This is a more direct form of
quality control than the ‘quality percentage’ sliders found
on many compression methods. The absolute error can
be tuned to conform to the error bounds of the bounding
box or the physical simulation, therefore presenting a true
representation of the data within the error limits. We note that
the calculated error was smaller than the user set maximum
error for all cases.

Third, the underlying data representation is not based on
quantization and therefore allows a high degree of accu-
racy while preserving the appearance of uniform sampling.
Quantization, as observed in other compression methods, is
especially noticeable during animated sequences. As points
can only take up discrete positions, any appearance of indi-
vidual motion is quickly lost in dense data sets. However,
we note that the description of a motion group is in effect the
description of the bounding box’s motion of a small subset
of point within the initial keyframe. As such, point cloud
compression methods, such as octree compression can be
applied to the key frame or the outlier point data.

Fourth, decompression of data is trivial and upload to the
GPU is very low. While the initial frame bears the high-
est cost, it is quickly amortized over the run of multiple
frames within a block. Previous approaches achieve high
compression rates but require a costly decompression and
data conversion step for each frame, thus reducing possible
frame rates significantly.

Finally, our method of storing delta frames in blocks results
in a very robust data storage. Each frame and its groups
depends only on the key frame but not on preceding frames.
This allows us to play back the data in both directions. Delta
frames can also be dropped (for example, during transmis-
sion) without influencing other block data or compromising
image quality of the remaining animation sequence as long
as the initial point cloud is unchanged.

Limitations

This work on the algorithm lays a foundation onto which
future extensions and improvement can be built. We acknowl-
edge the following limitations of our method in its current
state: first, the current method focuses on vertex positions and
we are currently unable to store color or any per-point per-
frame changing data in the blocks themselves. The reorder-
ing of the points, which enables significant space savings,
interferes with copying per-point attributes from block to
block; we therefore have to introduce the redirect block at a
fixed cost which stores the original point order and enables
a mapping from block-to-block. Once this is established,
however, is is possible to use these indices as unique texture
coordinates into textures which can be compressed using
video codecs (see below).

Second, while the algorithm enables less data to uploaded to
the graphics card over a series of frames, the initial upload

data requirement is much greater. Furthermore, as the data is
structured for motion groups as opposed to being structured
spatially, the entire point cloud is naively rendered every
frame, as the bounding boxes of motion groups often span
the entire data set, as points within a motion group are not
spatially coherent. This can be problematic when dealing
with limited hardware. The addition of spatial data structures
could help in both the rendering and annotation components
for interactive viewing.

Third, using RANSAC to find common features or mod-
els is time-consuming and, given the greedy nature of the
algorithm, may not yield an optimal solution. The heavy
reliance on random sampling also makes the compression
non-deterministic for a given input cloud.

Finally, while our algorithm allows users to specify the max-
imum allowable error, this in turn requires the user to have
an spatial understanding of their data set. An acceptable error
for a simulation of galaxies would likely be unacceptable for
a simulation of molecules. These limitations motivate future
research directions, as outlined below.

Future Work

We believe this algorithm lays the foundation for future
expansions of this work, including the support of per-point
colors, real-time capture and compression of point clouds
and refinements to the compression method. There is also
potential to use this method for transient feature detection
in animated data sets. For example, Figure 2 shows a
disturbance in the otherwise symmetrically motion groups of
the ‘Galaxy’ data set. The presence of the second galaxy (not
seen in this figure, but compare it to Figure 5, left) and its
gravitational influence disturbs the motion of these particles
in this part of the data set enough that they are assigned to
different motion groups.

Colors—The optional per-block redirection list affords con-
sistent indexing of each point and can act as texture coor-
dinate for each point. Per-frame color textures can become
large and expensive; we therefore suggest the use of movie
compression on these textures. The lossy nature of these
compressors, while detrimental to geometric data, is not
necessarily noticeable for color data as most compressors are
build around models of perception.

Quality Metrics—The methods presented in this paper aim to
create an algorithm which is lossy with a user-definable lower
error bound. One of the reasons for choosing this approach
is due to the lack of clarity of how loss of information will
be perceived. Research into the visual perception of error
in the data set could help determine maximum and optimal
settings for compression. An important factor to this error
perception is also the role outliers and motion groups play
and what the visual impact is (eg are groups or outliers
the defining feature of data sets). Future work will aim to
enable the user to define quality metrics (such as seen in
image and video encoding). The goal of this work will be to
enable a ‘maximum permissible error’ to achieve maximum
compression of the data set given a quality setting. Some
video and audio compression methods work similarly by
relying on a perceptual model (for example, psychoacoustics
for audio conversion) in which the less noticeable errors are
removed.

Transformation Detection—In the split phase we use trans-
formation estimation methods, such as pose estimation, to
calculate the transformation matrix between two time steps.

These methods usually contain constraints relevant for the
application — for example, pose estimation assumes rigid
body transformations without scaling. However, we do not
require these constraints for the transformation description as
long as a valid 4 x 4 transformation matrix is created. For
example, it would be possible, although inefficient, to create
this matrix using a random number generator as the RANSAC
approach will guarantee that only the best-suited matrix is
chosen.

9. CONCLUSION

This article introduces a novel compression method for time-
varying point cloud data. A high compression ratio is
achieved by tracking and describing group motion. This
results in a significant decrease in disk and memory usage.
The data layout is in addition optimized for rendering with
little to no decompression required which in turn improves
playback performance. The spatial structure of point clouds
is preserved which allows the immersive exploration at inter-
active frame rates and interaction methods such as tagging.

It is important to note that his method does not try to achieve
maximum compression but rather tries to maximize playback
performance. Therefore it should be viewed as a ‘movie
codec’ compression for point cloud sequences rather than a
compression method used for archiving purposes.

Future work will extend this algorithm to support user-
defined quality metrics and support more general, unstruc-
tured, time-varying point cloud data structures such as gath-
ered from 3D cameras or other depth sensors.

ACKNOWLEDGMENTS

Support for this research was provided by the University
of Wisconsin—-Madison, Office of the Vice Chancellor for
Research and Graduate Education with funding from the
Wisconsin Alumni Research Foundation.

REFERENCES

[1] R. Schnabel, S. Méser, and R. Klein, “A parallelly de-
codeable compression scheme for efficient point-cloud
rendering.” in SPBG. Citeseer, 2007, pp. 119-128.

[2] R. Schnabel and R. Klein, “Octree-based point-cloud
compression.” in SPBG, 2006, pp. 111-120.

[3] R. B. Rusu and S. Cousins, “3d is here: Point cloud
library (pcl),” in Robotics and Automation (ICRA), 2011
IEEE International Conference on. 1EEE, 2011, pp. 1-
4.

[4] J. Kammerl, N. Blodow, R. B. Rusu, S. Gedikli,
M. Beetz, and E. Steinbach, “Real-time compression
of point cloud streams,” in Robotics and Automa-
tion (ICRA), 2012 IEEE International Conference on.
IEEE, 2012, pp. 778-785.

[51 J.E.Lengyel, “Compression of time-dependent geome-
try,” in Proceedings of the 1999 symposium on Interac-

tive 3D graphics. ACM, 1999, pp. 89-95.

[6] K.-L. Ma and H.-W. Shen, “Compression and ac-
celerated rendering of time-varying volume data,”
in Proceedings of the 2000 International Computer
Symposium-Workshop on Computer Graphics and Vir-

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

tual Reality, 2000, pp. 82—89.

H.-W. Shen, L.-J. Chiang, and K.-L. Ma, “A
fast volume rendering algorithm for time-varying
fields using a time-space partitioning (tsp) tree,”
in Proceedings of the Conference on Visualization
'99: Celebrating Ten Years, ser. VIS ’99. Los
Alamitos, CA, USA: IEEE Computer Society
Press, 1999, pp. 371-377. [Online]. Available:
http://dl.acm.org/citation.cfm?id=319351.319434

X. Gu, S.J. Gortler, and H. Hoppe, “Geometry images,”
in ACM Transactions on Graphics (TOG), vol. 21, no. 3.
ACM, 2002, pp. 355-361.

M. Alexa and W. Miiller, “Representing animations by
principal components,” in Computer Graphics Forum,
vol. 19, no. 3. Wiley Online Library, 2000, pp. 411-
418.

H. M. Bricefio, P. V. Sander, L. McMillan, S. Gortler,
and H. Hoppe, “Geometry videos: a new representation
for 3d animations,” in Proceedings of the 2003 ACM
SIGGRAPH/Eurographics symposium on Computer an-
imation. BEurographics Association, 2003, pp. 136—
146.

S.-Y. Kim and Y.-S. Ho, “Mesh-based depth coding
for 3d video using hierarchical decomposition of depth
maps,” in Image Processing, 2007. ICIP 2007. IEEE
International Conference on, vol. 5. 1EEE, 2007, pp.
V-117.

T. Matsuyama, S. Nobuhara, T. Takai, and T. Tung,
“3d video encoding,” in 3D Video and Its Applications.
Springer, 2012, pp. 315-341.

P. Besl and N. D. McKay, “A method for registration of
3-d shapes,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 14, no. 2, pp. 239-256, Feb
1992.

V. Springel, “The cosmological simulation code gadget-
2, Monthly Notices of the Royal Astronomical Society,
vol. 364, no. 4, pp. 1105-1134, 2005.

X. Y. Ni and W. B. Feng, “Numerical simulation of
wave overtopping based on dualsphysics,” Applied Me-
chanics and Materials, vol. 405, pp. 1463-1471, 2013.

T. Heyn, H. Mazhar, A. Pazouki, D. Melanz, A. Seidl,
J. Madsen, A. Bartholomew, D. Negrut, D. Lamb, and
A. Tasora, “Chrono: A parallel physics library for
rigid-body, flexible-body, and fluid dynamics,” in ASME
2013 International Design Engineering Technical Con-
ferences and Computers and Information in Engineer-
ing Conference. American Society of Mechanical
Engineers, 2013, pp. VO7BT10A050-V07BT10A050.

J. Ziv and A. Lempel, “Compression of individual se-
quences via variable-rate coding,” Information Theory,
IEEE Transactions on, vol. 24, no. 5, pp. 530-536,
1978.

“Lizardtech lidar compression,” www.lizardtech.com,
online; accessed 16-February 2015.

M. Isenburg, “Laszip,” Photogrammetric Engineering
& Remote Sensing, vol. 79, no. 2, pp. 209-217, 2013.

C. Lux, “The opengl timer query,” in OpenGL Insights,
C. Patrick and C. Riccio, Eds. CRC Press, 2012.

10

BIOGRAPHY

Markus Broecker received his Dipl.-Inf
in Computer Visualistics from the Uni-
versity of Koblenz in 2009 and his PhD
Jfrom the University of South Australia in
2013. He works currently as an assistant
scientist at the Living Environments Lab
at the University of Wisconsin-Madison.
His research interests include Virtual
and Augmented Reality and point cloud
rendering methods.

Kevin Ponto received a B.S. degree
in computer engineering from the Uni-
versity of Wisconsin-Madison, a M.S.
degree from the Arts Computation En-
gineering program at the University of
California, Irvine and a Ph.D. in com-
puter Science from the University of Cal-
ifornia, San Diego. He is currently an
Assistant Professor at the University of
Wisconsin - Madison, jointly appointed
between the Living Environments Laboratory at the Wiscon-
sin Institutes for Discovery and the Design Studies Depart-
ment in the School of Human Ecology. He also has affiliate
appointments in the Department of Computer Sciences and
the Arts Institute. His research interests include Virtual and
Augmented Reality and Wearable Computing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

